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Orthogonality Basis

Definition (Orthogonality)
I Let ~x,~y ∈ Rn. We say the ~x and ~y are orthogonal if ~x · ~y = 0.
I More generally, X = {~x1,~x2, . . . ,~xk} ⊆ Rn is an orthogonal set if each

~xi is nonzero, and every pair of distinct vectors of X is orthogonal, i.e.,
~xi · ~xj = 0 for all i 6= j, 1 ≤ i, j ≤ k.

I A set X = {~x1,~x2, . . . ,~xk} ⊆ Rn is an orthonormal set if X is an
orthogonal set of unit vectors, i.e., ||~xi|| = 1 for all i, 1 ≤ i ≤ k.

⋂

Definition (Linearly Independence)

Let V be a vector space and S = {~x1,~x2, . . . ,~xk} a subset of V. The set S is
linearly independent if the following condition holds:

s1~x1 + s2~x2 + · · ·+ sk~xk = ~0 ⇒ s1 = s2 = · · · = sk = 0.
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Lemma (Independent Lemma)

Let V be a vector space and S = {v1, v2, . . . , vk} an independent subset of
V. If u is a vector in V, but u 6∈ span(S), then S′ = {v1, v2, . . . , vk, u} is
independent.

— v.s. —

Lemma (Orthogonal Lemma)

Suppose {~f1,~f2, . . . ,~fm} is an orthogonal subset of Rn, and suppose ~x ∈ Rn.
Define

~fm+1 = ~x− ~x ·~f1
||~f1||2

~f1 −
~x ·~f2
||~f2||2

~f2 − · · · −
~x ·~fm
||~fm||2

~fm.

Then
1. ~fm+1 ·~fj = 0 for all j, 1 ≤ j ≤ m.
2. If ~x 6∈ span{~f1,~f2, . . . ,~fm}, then ~fm+1 6= ~0, and {~f1,~f2, . . . ,~fm,~fm+1} is an

orthogonal set.



Proof. (of orthogonal lemma)

(1) For any 1 ≤ k ≤ m

~fm+1 ·~fk =

(
~x− ~x ·~f1
||~f1||2

~f1 −
~x ·~f2
||~f2||2

~f2 − · · · −
~x ·~fm
||~fm||2

~fm

)
·~fk

= ~x ·~fk −
~x ·~f1
||~f1||2

~f1 ·~fk −
~x ·~f2
||~f2||2

~f2 ·~fk − · · · −
~x ·~fm
||~fm||2

~fm ·~fk

= ~x ·~fk −
~x ·~fk
||~fk||2

~fk ·~fk

= ~x ·~fk − ~x ·~fk = 0.



Proof. (continued)

(2) Since {~f1, · · · ,~fm} are independent, by the unique representation
theorem, ~x ∈ span{~f1,~f2, . . . ,~fm}, iff there exists unique representation for ~x

~x = a1
~f1 + · · ·+ am~fm.

Using the fact that {~f1, · · · ,~fm} is orthogonal, one finds that

ai =
~x ·~fi
||~fi||2

.

In other words,

~x ∈ span{~f1, · · · ,~fm} ⇐⇒ ~fm+1 = ~x− ~x ·~f1
||~f1||2

~f1 −
~x ·~f2
||~f2||2

~f2 − · · · −
~x ·~fm
||~fm||2

~fm = ~0.

Now, ~x 6∈ span{~f1, · · · ,~fm} implies that ~fm+1 6= ~0.

Finally, {~f1,~f2, . . . ,~fm,~fm+1} is orthogonal thanks to (1). �



Theorem
Let U be a subspace of Rn.

1. Every orthogonal subset {~f1,~f2, . . . ,~fm} of U is a subset of an
orthogonal basis of U.

2. U has an orthogonal basis.

Proof.

Algorithm 1: Proof of part (1) of Theorem

Input : An orthogonal set {~f1,~f2, . . . ,~fm} ⊆ U ⊆ Rn

m→ n;
while span{~f1, · · · ,~fn} 6= U do

Pick up arbitrary ~x ∈ U \ span{~f1, · · · ,~fn};
Let ~fn+1 be given by the Orthogonal Lemma;
Then {~f1, · · · ,~fn,~fn+1} is an orthogonal set;
n + 1→ n;

end
Output: An orthogonal basis {~f1, · · · ,~fn} of U

(2) If U = {~0}, done. Otherwise, find an arbitrary nonzero vector in u and
run the algorithm in (1). �



Theorem (Gram-Schmidt Orthogonalization Algorithm)

Let U be a subset of Rn and let {~x1,~x2, . . . ,~xm} be a basis of U. Let
~f1 = ~x1, and for each j, 2 ≤ j ≤ m, let

~fj = ~xj −
~xj ·~f1
||~f1||2

~f1 −
~xj ·~f2
||~f2||2

~f2 − · · · −
~xj ·~fj−1

||~fj−1||2
~fj−1.

Then {~f1,~f2, . . . ,~fm} is an orthogonal basis of U, and

span{~f1,~f2, . . . ,~fj} = span{~x1,~x2, . . . ,~xj} ∀j = 1, · · · ,m.



Algorithm 2: Gram-Schmidt Orthogonalization Algorithm
Input : A basis {~x1,~x2, . . . ,~xm} ⊆ U ⊆ Rn

~f1 ← ~x1;
for j← 2 to m do

~fj ← ~xj −
~xj ·~f1
||~f1||2

~f1 −
~xj ·~f2
||~f2||2

~f2 − · · · −
~xj ·~fj−1

||~fj−1||2
~fj−1.

end
Output: An orthogonal basis {~f1, · · · ,~fm} of U s.t.

span{~f1,~f2, . . . ,~fj} = span{~x1,~x2, . . . ,~xj}
for all j = 1, · · · ,m.



span{~a1,~a2,~a3} = span{~b1, ~b2, ~b3}

basis → orthogonal basis



Problem
Let

~x1 =


1
0
1
0

 , ~x2 =


1
0
1
1

 , and ~x3 =


1
1
0
0

 ,

and let U = span{~x1,~x2,~x3}. We use the Gram-Schmidt Orthogonalization
Algorithm to construct an orthogonal basis B of U.

Proof.

First ~f1 = ~x1. Next,

~f2 =


1
0
1
1

− 2

2


1
0
1
0

 =


0
0
0
1

 .

Finally,

~f3 =


1
1
0
0

− 1

2


1
0
1
0

− 0

1


0
0
0
1

 =


1/2
1
−1/2
0

 .
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Proof. (continued)
Therefore, 


1
0
1
0

 ,


0
0
0
1

 ,


1/2
1
−1/2
0




is an orthogonal basis of U. However, it is sometimes more convenient to
deal with vectors having integer entries, in which case we take

B =




1
0
1
0

 ,


0
0
0
1

 ,


1
2
−1
0


 .

(Orthogonality of the set is not affected by multiplying vectors in the set by
nonzero scalars.) �
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The Orthogonal Complement U⊥

Definition
Let U be a subspace of Rn. The orthogonal complement of U, called U
perp, is denoted U⊥ and is defined as

U⊥ = {~x ∈ Rn | ~x · ~y = 0 for all ~y ∈ U}.
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Example

Let U = span


 −23

1

 ,

 5
−1
2

, and suppose ~v =

 a
b
c

 ∈ U⊥. Then

−2a + 3b + c = 0 and 5a− b + 2c = 0.

This system of two equations in three variables has solution

~v =

−7−9
13

 t, ∀t ∈ R,

which is noting but a line passing through origin and perpendicular with
the plane U.



Theorem (Properties of the Orthogonal Complement)
Let U be a subspace of Rn.

1. U⊥ is a subspace of Rn.
2. {~0}⊥ = Rn and (Rn)⊥ = {~0}.
3. If U = span{~y1,~y2, . . . ,~ym}, then

U⊥ = {~x ∈ Rn | ~x · ~yj = 0 for j = 1, 2, . . . ,m}.

Proof.
1. This is a standard subspace proof and is left as an exercise.

2. Here, ~0 is the zero vector of Rn. Since ~x ·~0 = 0 for all ~x ∈ Rn,
Rn ⊆ {~0}⊥. Since {~0}⊥ ⊆ Rn, the equality follows, i.e., {~0}⊥ = Rn.

Again, since ~x ·~0 = 0 for all ~x ∈ Rn, ~0 ∈ (Rn)⊥, so {~0} ⊆ (Rn)⊥.
Suppose ~x ∈ Rn, ~x 6= ~0. Since ~x · ~x = ||~x||2 and ~x 6= ~0, ~x · ~x 6= 0, so
~x 6∈ (Rn)⊥. Therefore, {~0}c ⊆

(
(Rn)⊥

)c, or equivalently, (Rn)⊥ ⊆ {~0}.
Thus (Rn)⊥ = {~0}.
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Proof. (continued)

3. Let X = {~x ∈ Rn | ~x · ~yj = 0 for j = 1, 2, . . . ,m}.

“U⊥ ⊆ X”: Suppose that ~v ∈ U⊥. Then ~v is orthogonal to every vector
in U; in particular, ~v · ~yj = 0 for j = 1, 2, . . . ,m since each such ~yj is in
U. Therefore, ~v ∈ X. This proves that U⊥ ⊆ X.

“X ⊆ U⊥”: Now suppose that ~v ∈ X and ~u ∈ U. Then
~u = a1~y1 + a2~y2 + · · ·+ am~ym for some a1, a2, . . . , am ∈ R, and so

~v · ~u = ~v · (a1~y1 + a2~y2 + · · ·+ am~ym)

= ~v · (a1~y1) + ~v · (a2~y2) + · · ·+ ~v · (am~ym)

= a1(~v · ~y1) + a2(~v · ~y2) + · · ·+ am(~v · ~ym).

Since ~v ∈ X, ~v · ~yj = 0 for all j, 1 ≤ j ≤ m. Therefore, ~v · ~u = 0, and
thus X ⊆ U⊥.

Finally, since U⊥ ⊆ X and X ⊆ U⊥, we see that U⊥ = X. �
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Problem
Let

U = span




0
−1
3
2

 ,


2
1
0
4


 .

Find U⊥ by finding a basis of U⊥.

Solution

U⊥ =




a
b
c
d

 ∈ R4

∣∣∣∣∣∣∣∣


a
b
c
d

 ·


0
−1
3
2

 = 0 and


a
b
c
d

 ·


2
1
0
4

 = 0

 .

This leads to the system of two equation in four variables

−b + 3c + 2d = 0

2a + b + 4d = 0
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Solution (continued)

A =

[
0 −1 3 2 0
2 1 0 4 0

]
→ · · · →

[
1 0 3/2 3 0
0 1 −3 −2 0

]
Therefore,

U⊥ =



− 3

2
s− 3t

3s + 2t
s
t

 ∈ R4

∣∣∣∣∣∣∣∣ s, t ∈ R

 = span



− 3

2

3
1
0

 ,


3
2
0
1


 .

Since the set B =



− 3

2

3
1
0

 ,


3
2
0
1


 is independent and spans U⊥, B is a

basis of U⊥. �

Remark

Notice that U⊥ = null(A), where A is the matrix whose rows are a
spanning subset of U.
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Definition of Orthogonal Projection

Theorem (Projection Formula)

Suppose ~u and ~v are vectors in R3, ~v 6= ~0. Then the projection of ~u on ~v,
denoted as proj~v(~u), is equal to

proj~v(~u) =
(
~u · ~v
||~v||2

)
~v.

~u

~v

~u

proj~v(~u)



Definition of Orthogonal Projection

Theorem (Projection Formula)

Suppose ~u and ~v are vectors in R3, ~v 6= ~0. Then the projection of ~u on ~v,
denoted as proj~v(~u), is equal to

proj~v(~u) =
(
~u · ~v
||~v||2

)
~v.

~u

~v

~u

proj~v(~u)



Proof.
Let ~p = proj~v(~u); then ~p is parallel to ~v, so ~p = t~v for some t ∈ R, and
~u− ~p = ~u− t~v is orthogonal to ~v, so

(~u− t~v) · ~v = 0

~u · ~v − t~v · ~v = 0

~u · ~v = t||~v||2

Since ~v 6= ~0,

t =
~u · ~v
||~v||2 .

Therefore,

~p = t~v =

(
~u · ~v
||~v||2

)
~v.

�



Proof.
Let ~p = proj~v(~u); then ~p is parallel to ~v, so ~p = t~v for some t ∈ R, and
~u− ~p = ~u− t~v is orthogonal to ~v, so

(~u− t~v) · ~v = 0

~u · ~v − t~v · ~v = 0

~u · ~v = t||~v||2

Since ~v 6= ~0,

t =
~u · ~v
||~v||2 .

Therefore,

~p = t~v =

(
~u · ~v
||~v||2

)
~v.

�



Remark
Note that
I {~v} is an orthogonal basis of the subspace U of R3 consisting of the line

through the origin parallel to ~v.
I ~u− ~p ∈ U⊥ (since (~u− ~p) · ~v = 0).



Example ( Generalizing to Rn )

Suppose U is a subspace of Rn, ~x ∈ Rn, and that {~f1,~f2, . . . ,~fm} and
{~g1,~g2, . . . ,~gm} are orthogonal bases of U. Define

~pf =

(
~x ·~f1
||~f1||2

)
~f1 +

(
~x ·~f2
||~f2||2

)
~f2 + · · ·+

(
~x ·~fm
||~fm||2

)
~fm and

~pg =

(
~x · ~g1

||~g1||2

)
~g1 +

(
~x · ~g2

||~g2||2

)
~g2 + · · ·+

(
~x · ~gm

||~gm||2

)
~gm.

Then ~pf , ~pg ∈ U (since they are linear combinations of vectors of U) and
~x− ~pf ,~x− ~pg ∈ U⊥ (by the Orthogonal Lemma). This implies that
~pf − ~pg ∈ U, and (~x− ~pg)− (~x− ~pf) ∈ U⊥. However,

(~x− ~pg)− (~x− ~pf) = ~pf − ~pg,

and thus ~pf − ~pg is in both U and U⊥. This is possible if and only if
~pf − ~pg = ~0, i.e., ~pf = ~pg. This means that the computation of ~pf and ~pg

does not depend on which orthogonal basis is used.
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Definition

Let {~f1,~f2, . . . ,~fm} be an orthogonal basis for a subspace U of Rn, and let
~x ∈ Rn. The projection of ~x on U is defined as

projU(~x) =

(
~x ·~f1
||~f1||2

)
~f1 +

(
~x ·~f2
||~f2||2

)
~f2 + · · ·+

(
~x ·~fm
||~fm||2

)
~fm.

Remark

1. if U = {~0}, then proj{~0}(~x) = ~0 for any ~x ∈ Rn;
2. if ~x ∈ U, then projU(~x) is also called the Fourier Expansion of ~x.
3. In Orthogonal Lemma

~fm+1 = ~x−

(
~x ·~f1
||~f1||2

~f1 +
~x ·~f2
||~f2||2

~f2 − · · ·+
~x ·~fm
||~fm||2

~fm

)
︸ ︷︷ ︸

= projU(~x)

.
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The Projection Theorem and its Implications

Theorem (Projection Theorem)

Let U be a subspace of Rn, ~x ∈ Rn, and ~p = projU(~x). Then
1. ~p ∈ U and ~x− ~p ∈ U⊥;
2. ~p is the vector in U closest to ~x, meaning that for any ~y ∈ U, ~y 6= ~p,

||~x− ~p|| < ||~x− ~y||.

U

~x

O~p

~x− ~p

~x

O
~p

~x− ~p

U : ~n · ~x = d
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Proof.

1. By definition, ~p ∈ U, and by the Orthogonal Lemma, ~x− ~p ∈ U⊥.

2. Let ~y ∈ U, ~y 6= ~p. By the properties of vector addition/subtraction

~x− ~y = (~x− ~p) + (~p− ~y).

Since ~x− ~p ∈ U⊥ and ~p− ~y ∈ U,

(~x− ~p) · (~p− ~y) = 0.

Hence, by Pythagoras’ Theorem,

||~x− ~y||2 = ||~x− ~p||2 + ||~p− ~y||2.

Since ~y 6= ~p, ||~p− ~y|| > 0, so

||~x− ~y||2 > ||~x− ~p||2.

Taking square roots (since ||~x− ~y|| and ||~x− ~p|| are nonnegative),

||~x− ~y|| > ||~x− ~p||.
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Example
Let

~x1 =


1
0
1
0

 ,~x2 =


1
0
1
1

 ,~x3 =


1
1
0
0

 , and ~v =


4
3
−2
5

 .

We want to find the vector in U = span{~x1,~x2,~x3} closest to ~v.

In a previous example, we used the Gram-Schmidt Orthogonalization
Algorithm to construct the orthogonal basis, B, of U:

B =




1
0
1
0

 ,


0
0
0
1

 ,


1
2
−1
0


 .
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Example (continued)
By the Projection Theorem,

projU(~v) =
2

2


1
0
1
0

+
5

1


0
0
0
1

+
12

6


1
2
−1
0

 =


3
4
−1
5


is the vector in U closest to ~v.



Problem
Let

~x1 =


1
0
1
0

 ,~x2 =


1
1
1
0

 , and ~x3 =


1
1
0
0

 ,

and let U = span{~x1,~x2,~x3}. Find an orthogonal basis of U, and find the
vector in U closest to

~v =


2
0
−1
3

 .

Solution ( Outline )
First use the Gram-Schmidt Orthogonalization Algorithm to construct an
orthogonal basis of of U, and then find the projection of ~v on U.
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1
0
1
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1
1
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Solution ( continued )
Gram-Schmidt orthogonalization with

~f1 = ~x1,

~f2 = ~x2 −
~x2 ·~f1
||~f1||2

~f1,

~f3 = ~x3 −
~x3 ·~f1
||~f1||2

~f1 −
~x3 ·~f2
||~f2||2

~f2

yields an orthogonal basis

B =




1
0
1
0

 ,


0
1
0
0

 ,


1
0
−1
0


 .

Thus the vector in U closest of ~v is

projU(~v) =
1

2


1
0
1
0

+
3

2


1
0
−1
0

 =


2
0
−1
0

 .



Problem
Find the point q in the plane 3x + y − 2z = 0 that is closest to the point
p0 = (1, 1, 1).

Solution
Recall that any plane in R3 that contains the origin is a subspace of R3.

1. Find a basis X of the subspace U of R3 defined by the equation
3x + y − 2z = 0.

2. Orthogonalize the basis X to get an orthogonal basis B of U.
3. Find the projection on U of the position vector of the point p0.
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Solution (continued)
1. 3x + y − 2z = 0 is a system of one equation in three variables. Putting

the augmented matrix in reduced row-echelon form[
3 1 −2 0

]
→
[
1 1

3
− 2

3
0
]

gives general solution x = 1
3
s + 2

3
t, y = s, z = t for any s, t ∈ R. Then

U = span


 − 1

3

1
0

 ,

 2
3

0
1

 .

Let

X =


 −13

0

 ,

 2
0
3


Then X is linearly independent and span(X) = U, so X is a basis of U.



Solution (continued)
1. Use the Gram-Schmidt Orthogonalization Algorithm to get an

orthogonal basis of U:

~f1 =

 −13
0

 and ~f2 =

 2
0
3

− −2
10

 −13
0

 =
1

5

 9
3

15

 .

Therefore,

B =


 −13

0

 ,

 3
1
5


is an orthogonal basis of U.



Solution (continued)

3. To find the point q on U closest to p0 = (1, 1, 1), compute

projU

 1
1
1

 =
2

10

 −13
0

+
9

35

 3
1
5


=

1

7

 4
6
9

 .

Therefore, q =
(
4
7
, 6
7
, 9
7

)
. �
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Projection as a Linear Transformation

Definition
Let V and W be vector spaces, and T : V→W a linear transformation.

1. The kernel of T (sometimes called the null space of T) is defined to be
the set

ker(T) = {~v ∈ V | T(~v) = ~0}.

2. The image of T is defined to be the set

im(T) = {T(~v) | ~v ∈ V}.

Theorem
Let U be a fixed subspace of Rn, and define T : Rn → Rn by

T(~x) = projU(~x) for all ~x ∈ Rn.

Then
1. T is a linear operator on Rn;
2. im(T) = U and ker(T) = U⊥;
3. dim(U) + dim(U⊥) = n.
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Proof.

If U = {~0}, then U⊥ = Rn, so T(~x) = ~0 for all ~x ∈ Rn. This implies that
T = 0 (the zero transformation), and the theorem holds.

Now suppose that U 6= {~0}. We first prove (3) based on (1) and (2):
3. Since T is a linear transformation – part (1), the Rank-Nullity

Theorem implies that

dim(im(T)) + dim(ker(T)) = dimRn = n.

Applying the result from part (2), we get

dim(U) + dim(U⊥) = n.



Proof. ( continued )

1. Let B = {~f1,~f2, . . . ,~fm} be an orthonormal basis of U. Then by the
definition of projU(~x),

T(~x) = (~x ·~f1)~f1 + (~x ·~f2)~f2 + · · ·+ (~x ·~fm)~fm, (1)

(since ‖~fi‖2 = 1 for each i = 1, 2, . . . ,m).

Let ~x,~y ∈ U and k ∈ R. Then

T(~x + ~y) = ((~x + ~y) ·~f1)~f1 + ((~x + ~y) ·~f2)~f2 + · · ·+ ((~x + ~y) ·~fm)~fm
= (~x ·~f1 + ~y ·~f1)~f1 + (~x ·~f2 + ~y ·~f2)~f2 +
· · ·+ (~x ·~fm + ~y ·~fm)~fm

= (~x ·~f1)~f1 + (~y ·~f1)~f1 + (~x ·~f2)~f2 + (~y ·~f2)~f2 +
· · ·+ (~x ·~fm)~fm + (~y ·~fm)~fm

= [(~x ·~f1)~f1 + (~x ·~f2)~f2 + · · ·+ (~x ·~fm)~fm]

+[(~y ·~f1)~f1 + (~y ·~f2)~f2 + · · ·+ (~y ·~fm)~fm]

= T(~x) + T(~y).

Thus ~x + ~y ∈ U, so T preserves addition.
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Proof. ( continued )

1. (continued) Also,

T(k~x) = ((k~x) ·~f1)~f1 + ((k~x) ·~f2)~f2 + · · ·+ ((k~x) ·~fm)~fm
= (k(~x ·~f1))~f1 + (k(~x ·~f2))~f2 + · · ·+ (k(~x ·~fm))~fm
= k(~x ·~f1)~f1 + k(~x ·~f2)~f2 + · · ·+ k(~x ·~fm)~fm
= k[(~x ·~f1)~f1 + (~x ·~f2)~f2 + · · ·+ (~x ·~fm)~fm]

= kT(~x).

Thus k~x ∈ U, so T preserves scalar multiplication.

Therefore, T is a linear transformation.



Proof. (continued)

2. By equation (1), T(~x) ∈ U because T(~x) is a linear combination of the
elements of B ⊆ U, and therefore im(T) ⊆ U. Conversely, suppose that
~x ∈ U. By using Fourier Expansion, ~x = T(~x), and thus ~x ∈ im(T).
Therefore U ⊆ im(T). Since im(T) ⊆ U and U ⊆ im(T), im(T) = U.

To show that ker(T) = U⊥, let ~x ∈ U⊥. Then ~x ·~fi = 0 for each
i = 1, 2, . . . ,m, so T(~x) = ~0, implying ~x ∈ ker(T). Thus U⊥ ⊆ ker(T).
Conversely, let ~x ∈ ker(T). Then T(~x) = ~0, so ~x− T(~x) = ~x; but,
~x− T(~x) ∈ U⊥ (Projection Theorem), so ~x ∈ U⊥, implying that
ker(T) ⊆ U⊥. Since U⊥ ⊆ ker(T) and ker(T) ⊆ U⊥, ker(T) = U⊥. �
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